skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Michael Ogunsanya, Salil Desai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents hyperparameter tuning techniques for a deep learning predictive model with applications in additive manufacturing processes. Bioprinting is an additive manufacturing process which utilizes biomaterials, cells, and growth factors to build functional tissue constructs for biomedical applications. In this research, we evaluate the hyperparameter space using grid search technique to tune the perceptron deep learning hyperparameters for optimal prediction of additive manufacturing outcomes. Hyperparameter entities include number of neurons, learning rate, and number of epochs to run machine learning models. Five input parameters and three output variables were evaluated for a typical additive manufacturing process. A comparative analysis is conducted to demonstrate improved runtime and lower root mean squared error for additive manufacturing predictive models. The results from this research are extensible to several additive manufacturing processes including 3D bioprinting. 
    more » « less